Circular economy: Getting the circulation going

This article, which was written by Barbara Kiser for, discusses the evolution of the circular economy and the current hurdles the model faces today. 

In linear economics, objects of desire from skyscrapers to paperclips are waste waiting to happen. Now, linearity is reaching the end of the line: designers are looking to the loop and redefining refuse as resource.

Circularity is at the core of eco-design, the production methodology in which waste is repurposed and environmental impacts such as raw-material use are reduced through reuse and recycling. But if that loop is a lasso for reining in excess, the reality — as US philosopher Ralph Waldo Emerson wrote in the industrializing 1840s — remains that “Things are in the saddle,/And ride mankind”. The scale of global waste and its proportionate economic and environmental costs is gargantuan.

Some 269,000 tonnes of plastic litter the world’s oceans, and vast industrial cast-offs such as manure lagoons and slag heaps blight landscapes. What lurks beneath is daunting. Landfill swallows much domestic and construction waste, where residual energy is lost and decomposition under anaerobic conditions creates a stream of problematic subwaste, from the powerful greenhouse gas methane to leachable contaminants such as benzene. The United States sends 40% of its food to landfill and discards 70–80% of the 145 million tonnes of construction and demolition debris that it generates each year — even though much of the wood, metal and minerals is recyclable. In 2012, Europe sent almost half of its 2.3 billion tonnes of waste to landfill. And that is just stuff: up to 50% of industrial energy input becomes waste heat.

Faced with this entrenched dynamic, how can closed-loop systems become the norm? One answer is to integrate them into circular economies — wheels within wheels. This model looks to extend the life of products at the ‘use’ stage, retaining value and designing out harmful by-products such as toxic substances, to create the perfect habitat for ecologically innovative companies.

For a model that slots so neatly into eco-thinking, the circular economy is a surprisingly venerable concept. In 1966, economist Kenneth Boulding hatched the idea of “a stable, closed-cycle, high-level technology” in his seminal paper ‘The economics of the coming spaceship Earth’ (see A. Rome Nature 527, 443–444; 2015). Five years later, in a Life magazine interview, systems theorist R. Buckminster Fuller — an advocate of ‘more with less’ design from the 1920s — declared that pollution “is nothing but resources we’re not harvesting. We allow them to disperse because we’ve been ignorant of their value.” That year also saw the publication of Design for the Real World (Pantheon), an influential manifesto by Viennese educator (and ally of Fuller) Victor Papanek, who inveighed against designers creating “whole species of permanent garbage to clutter up the landscape” and called for a socially inclusive, environmentally responsible design ethic.

The 1970s saw significant practical developments. US landscape architect John T. Lyle pioneered ‘regenerative design’ focused on local, renewable resource use. Swiss architect Walter Stahel (see page 435) codified existing ideas and developed key new ones as principles for his Product-Life Institute in Geneva in the 1980s. More recently, German chemist Michael Braungart and US architect William McDonough (who had collaborated with Lyle) established the product and system certification Cradle to Cradle (a coinage of Stahel’s), which treats industrial flows as metabolic and waste as nutrients (C. Wise et al. Nature 494, 172–175; 2013). Their book Cradle to Cradle (North Point) was published in 2002.

Such design revolutions are essentially longitudinal collaborations between generations, as historian of technology Walter Isaacson has revealed (J. Light Nature 514, 32–33; 2014). Meanwhile, eco-design has moved on from the isolated gizmos and warranties of the 1970s, such as Germany’s ‘life cycle’ eco-label, Blue Angel. New ventures are designing circularity in from the off, as the case studies here demonstrate. Enterra in Vancouver, Canada, recycles unsold organic food to feed fly larvae, which it then harvests as livestock feed (see ‘Transform waste into protein’). AeroFarms in Newark, New Jersey, grows up to 4 million kilograms of baby leafy greens a year in vertical indoor ‘fields’, without pesticides and using 95% less water than in field farming.

A number of grand old companies are retrofitting circularity. BAM Construct UK (of the Dutch Royal BAM Group, founded in 1869) focuses on disassembly — ensuring that the raw materials it uses are either interchangeable or easily separated, and that components can be dismantled (see ‘Design for deconstruction’). UK aerospace-engine powerhouse Rolls-Royce plc has cut raw-material use, cost and emissions through its recycling programme, Revert (see ‘Create consistent supply systems’), which emphasizes ‘power by the hour’ and remanufacturing.

Academia and governments are also waking up to circular thinking, from China (see page 440) to Europe. British sailor and circumnavigator Ellen MacArthur aims to speed the transition through her eponymous foundation in Cowes, UK, which has synthesized existing knowledge to educate on, and catalyse innovation towards, the circular economy, collaborating energetically with businesses as well as design and engineering universities. On board are Delft University of Technology in the Netherlands; the University of Bradford, UK, which established the first circular-economy master’s degree in 2013; and, under a fellowship with the philanthropic US Schmidt Family Foundation in Boca Raton, Florida, a consortium of 12 universities including the Massachusetts Institute of Technology in Cambridge, Tongji University in Shanghai, China, the Indian National Institute of Design in Ahmedabad and Imperial College London.

Collectively, all this constitutes a great deal more than a gleam in Buckminster Fuller’s eye. Yet if the circular economy is an ecosystem for green innovation, it is primarily an island one: wildlife corridors are few. No city, region or country has embraced the vision fully. And the urbanizing, consuming and wasting world does not stand still: the Organisation for Economic Co-operation and Development estimates that the global middle class (with all its material hankerings and ‘disposable’ income) will swell to 4.9 billion by 2030 (from 1.8 billion in 2009). Meanwhile, the evolving industrial worldscape — a welter of start-ups, monocultures and multinationals, most clinging to business-as-usual — contributes a dynamic unpredictability.

There are problems, too, with the circular model itself. Martin Charter, director of the Centre for Sustainable Design at the University for the Creative Arts in Farnham, UK, notes a “lack of overall clarity over the concept. Perhaps just 100 companies worldwide have adopted a true circularity mindset as a core strategy.” As for the circular mantra of switching to the digital, data centres waste an average of 90% of the energy that they consume (30 billion watts, equivalent to the output of 30 nuclear power plants) and account for 17% of technology’s carbon footprint. Although the circular ‘business case’ looks remarkable (global management consultants McKinsey and Company estimate that it could add US$2.6 trillion to the European economy by 2030), the fact that business remains central to the vision is a vulnerability. The growth economy impedes sustainability. In 2014, for instance, Chevron and a number of other big oil companies retreated from investments in renewables because of poor returns. Business competitiveness and ‘disruption’ can hinder the collaboration that is central to eco-design. UK design engineer Chris Wise has noted that the practice of using ‘least materials’ is at odds with the construction industry’s prime aim of selling more materials (C. Wise et al. Nature 494, 172–175; 2013). The ‘rebound effect’, in which designed efficiency leads to greater use or consumption, is a related conundrum.

The thirteenth-century artist Giotto reportedly proved his genius by drawing a perfect circle. The cycles of the biosphere, from water to soil, are wonders of economy. So the idea of a circle strikes a deep chord in us. But one look at any large city reveals disconnection, pollution and social inequality. Can we square the circular economy?

To read the original article, visit the website.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a comment